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Abstract

Within the framework of an SO(10) GUT model that can accommo-

date both the atmospheric and the LMA solar neutrino mixing solutions, we

present explicit predictions for the neutrino oscillation parameters sin2 2�13,

sin2 2�12, sin
2 2�23, and �m2

21. Precise measurements of sin
2 2�12 and �m2

21

by KamLAND can be used to precisely determine the GUT model param-

eters. We �nd that the model can then be tested at Neutrino Superbeams

and Neutrino Factories with precision neutrino oscillation measurements of

sin2 2�23; sin
2 2�13, and the leptonic CP phase ÆCP .
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I. INTRODUCTION

Over the last few years the evidence for neutrino oscillations between the three known
active-neutrino avors (�e; ��, and �� ) has become increasingly convincing. The atmospheric
neutrino ux measurements from the Super-Kamiokande (Super-K) experiment exhibit a
de�cit of muon neutrinos which varies with zenith angle (and hence baseline) in a way
consistent with �� ! �x oscillations [1]. In principle �x could be �e; �� , �s (where �s is a light
sterile neutrino), or some combination of these. However, further Super-K measurements
exclude �x being predominantly �s, and reactor �e disappearance results from the CHOOZ
experiment [2] exclude �x being predominantly �e. Hence, the Super-K atmospheric neutrino
measurements provide strong evidence for �� ! �� oscillations; indeed there is some evidence
for �� interactions in the Super-K data. In addition to the atmospheric neutrino de�cit, there
has been the long-standing result, �rst obtained from the Homestake experiment [3], that
the �e ux from the sun is less than expected. The recent measurement of the total ux
of active neutrinos from the sun obtained from the SNO experiment [4] is consistent with
the predicted ux from solar models [5]. Hence, when taken together with solar neutrino
measurements from Super-K [6], the SNO results imply that there is a component of active
neutrinos within the solar ux that is not �e, and hence that �e ! �x oscillations are taking
place, where �x can be �� and/or �� . The solar neutrino and atmospheric neutrino results,
taken together, suggest that oscillations occur between all three known active avors.

The atmospheric neutrino data are consistent with �� ! �� oscillations provided the
oscillation parameters that de�ne the oscillation amplitude and frequency lie in one well-
de�ned region of parameter space. In contrast, the solar neutrino measurements are cur-
rently consistent with the associated oscillation parameters being within any of four regions
of parameter space. However, although the evidence is not yet compelling, the data seem
to exhibit a preference for one of these regions of parameter space, namely the one corre-
sponding to the Large Mixing Angle (LMA) MSW solution [7].

The splittings between the squares of the masses of the neutrino mass eigenstates deter-
mine the oscillation frequency. The atmospheric- and solar-neutrino oscillation data imply
that neutrinos have masses in the range 10�5� 1 eV. This mass scale can be accommodated
naturally within the framework of models based on Grand Uni�ed Theories (GUTs). The
very small neutrino mass is easily generated by the seesaw mechanism [8] in which the light
neutrino mass matrix is obtained from the Dirac and right-handed Majorana neutrino mass
matrices.

Grand Uni�ed models provide a theory of avor, and relate quark masses and mixings
to lepton masses and mixings. Hence, neutrino oscillation data, which measure neutrino
masses and mixings, constrain GUT models. In this paper, for one promising GUT model,
we explore how future neutrino oscillation experiments can test the theory. We restrict
ourselves to the LMA solution for the solar neutrino data, and provide predictions for the
neutrino mass-splittings and mixing angles that will be measured in the next few years.

2



II. THREE-FLAVOR MIXING

Within the framework of three-avor mixing, the avor eigenstates �� (� = e; �; �) are
related to the mass eigenstates �j (j = 1; 2; 3) in vacuum by

�� =
X
j

U�j�j ; (1)

where U is the unitary 3� 3 Maki-Nakagawa-Sakata (MNS) mixing matrix [9] times a diag-
onal phase matrix �M : U = UMNS�M . The MNS mixing matrix is conventionally speci�ed
by 3 mixing angles (�23; �12; �13) and a CP-violating phase (ÆCP ) with the parameterization

UMNS =

0
B@

c12c13 s12c13 s13e
�iÆCP

�s12c23 � c12s23s13e
iÆCP c12c23 � s12s23s13e

iÆCP s23c13
s12s23 � c12c23s13e

iÆCP �c12s23 � s12c23s13e
iÆCP c23c13

1
CA ; (2)

where cjk � cos �jk and sjk � sin �jk. The angles can be restricted to the �rst quadrant,
0 � �ij � �=2, with ÆCP in the range �� � ÆCP � �, though it will later prove advantageous
to consider �13 in the fourth quadrant. The �M phase matrix has the form

�M = diag(ei�1 ; ei�2 ; 1); (3)

where �1 and �2 are Majorana phases which can not be rotated away.
The atmospheric neutrino oscillation data indicate that [1]

j�m2

32
j ' 3:2� 10�3 eV2;

sin2 2�23 = 1:0; (� 0:89 at 90% c:l:);
(4)

where �m2

ij � m2

i � m2

j and m1; m2 and m3 are the mass eigenstates.. The atmospheric
neutrino oscillation amplitude can be expressed in terms of the UMNS matrix elements and is
given by sin2 2�atm = 4jU�3j

2(1�jU�3j
2) ' 4jU�3j

2jU�3j
2. The approximation is valid because

jUe3j is known to be small [2].
The solar neutrino oscillation data from Super-K indicate that, for the LMA solution,

the allowed region is approximately bounded by

�m2

21
= (2:2� 17)� 10�5 eV2;

sin2 2�sol = (0:6� 0:9);
(5)

where the solar neutrino oscillation amplitude is given by sin2 2�sol = 4jUe1j
2(1� jUe1j

2) '
4jUe1j

2jUe2j
2. In de�ning the viable region of GUT model parameter space we shall make use

of the allowed LMA solar mixing region speci�ed in [6]. Other recent analyses also prefer
the LMA solution [10] .
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III. THE GUT MODEL

The GUT model which shall be studied here was developed by Albright and Barr [11]
and is based on the grand uni�ed group SO(10) with a U(1) � Z2 � Z2 avor symmetry.
We adopt this model in our present study because it can accommodate the LMA solution
and makes quantitative predictions for the measured oscillation parameters. The model
involves a minimum set of Higgs �elds which solves the doublet-triplet splitting problem.
This requires just one 45H whose VEV points in the B � L direction, and there are no
higher rank representations. Two pairs of 16H ; 16H 's stabilize the solution [12]. Several
Higgs in the 10H representations, together with Higgs singlets, are also present. The Higgs
superpotential exhibits the U(1)� Z2 � Z2 symmetry [12] which is used for the avor sym-
metry of the GUT model. The combination of VEVs, h45HiB�L; h1(16H)i and h1(16H)i
break SO(10) to the Standard Model. The electroweak VEVs arise from the combinations
vu = h5(10H)i and vd = h5(10H)i cos  + h5(16

0
H)i sin, while the combination orthogonal

to vd gets massive at the GUT scale. As such, Yukawa coupling uni�cation can be achieved
at the GUT scale with tan� � 2� 55, depending upon the 5(10H)� 5(16H) mixing present
for the vd VEV. In addition, matter super�elds appear in the following representations:
161; 162; 163; 16; 16; 16

0, 160; 101; 102, and 1's, where all but the 16i (i = 1; 2; 3) get
superheavy and are integrated out.

The Dirac mass matrices for the up quarks, down quarks, neutrinos and charged leptons
are found to be

U =

0
B@
� 0 0
0 0 �=3
0 ��=3 1

1
CAMU ; D =

0
B@

0 Æ Æ0ei�

Æ 0 � + �=3
Æ0ei� ��=3 1

1
CAMD;

N =

0
B@
� 0 0
0 0 ��
0 � 1

1
CAMU ; L =

0
B@

0 Æ Æ0ei�

Æ 0 ��
Æ0ei� � + � 1

1
CAMD;

(6)

where
MU ' 113 GeV; MD ' 1 GeV;
� = 1:78; � = 0:145;
Æ = 0:0086; Æ0 = 0:0079;
� = 126Æ; � = 8� 10�6

(7)

are input parameters de�ned at the GUT scale to �t the low scale observables after evo-
lution downward from �GUT . Note that the phase � was incorrectly stated as 54Æ in [11].
The above textures were obtained by imposing the Georgi-Jarlskog relations [13] at �GUT ,
m0

s ' m0

�=3; m
0

d ' 3m0

e with Yukawa coupling uni�cation holding for tan� � 5. The ma-
trix element contributions can be understood in terms of Froggatt-Nielsen diagrams [14] as
explained in [11].

All nine quark and charged lepton masses, plus the three CKM angles and CP phase,
are well-�tted with the eight input parameters. With no extra phases present, aside from
the one appearing in the CKM mixing matrix, the vertex of the CKM unitary triangle
occurs at the center of the presently allowed region with sin 2� ' 0:64. The Hermitian
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matrices U yU; DyD, and N yN are diagonalized with small left-handed rotations, while
LyL is diagonalized by a large left-handed rotation. This accounts for the small value of
Vcb = (U y

UUD)cb, while jU�3j = j(U y
LU�)�3j will turn out to be large for any reasonable right-

handed Majorana mass matrix, MR [15].
The e�ective light neutrino mass matrix, M�, is obtained from the seesaw mechanism

[8] whereby M� = NTM�1

R N . While the large atmospheric neutrino mixing �� $ �� arises
primarily from the structure of the charged lepton mass matrix, the solar and atmospheric
mixings are essentially decoupled in the model, so the structure of the right-handed Majorana
mass matrix determines the type of �e $ ��; �� solar neutrino mixing. Any one of the
recently favored four solar neutrino mixing solutions can be obtained. The LMA solution
relevant to our study here requires some �ne-tuning and a hierarchical structure, but this
can be explained in terms of Froggatt-Nielsen diagrams. The most general form for the
right-handed Majorana mass matrix we consider is [11]

MR =

0
B@
c2�2 �b�� a�
�b�� �2 ��
a� �� 1

1
CA�R; (8)

where the parameters � and � are those introduced in Eq.(6) for the Dirac sector. Note that
the 2-3 subsector has zero determinant and is closely related to that of N , as can also be
understood in terms of Froggatt-Nielsen diagrams. If we set a = b = c, there is just one
hierachy present involving one Higgs singlet which induces a �L = 2 transition. In this case
the determinant of MR vanishes. In order to have an invertible MR and a viable seesaw
mechanism, for simplicity we set b = c but choose a 6= b. This is neatly explained in terms
of two Higgs singlets which break lepton number. One singlet contributes to all nine matrix
elements while, by virtue of its avor charge assignment, the other singlet modi�es only the
13 and 31 elements of MR.

To obtain UMNS from the mass matrices L and M�, we compute the unitary transfor-
mations UL and U� that diagonalize LyL and M y

�M� and yield the squares of the charged
and neutral lepton mass eigenvalues, respectively. Three arbitrary phase transformations
can be performed on the columns of UL which are constructed from the eigenvectors of LyL.
However, since M� is complex symmetric, it can also be diagonalized by use of the same U�:

UT
� M�U� = diag(m1; �m2; m3): (9)

Since we want the light neutrino masses to be real, U� can not be arbitrarily phase trans-
formed and is uniquely speci�ed up to sign changes on its column eigenvectors. The unitary
mixing matrix U in Eq. (1) is then given by

U = UMNS�M =
�
�y
rowU

y
LU��col

�
�y
col; (10)

where �row and �column are the row and column phase transformations

�row = diag(e�i�1 ; e�i�2 ; e�i�3);

�col = diag(e�i�1 ; e�i�2; 1)
(11)
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of U y
LU� needed to bring UMNS into the parametric form of Eq.(2) whereby the e1; e2; �3

and �3 elements are real and positive, the real parts of �2 and �1 are positive, while the
real parts of �1 and �2 are negative. The last factor �y

col serves to undo the column phase
transformation on U� and is just the Majorana phase matrix, �M = �y

col, from which the
two Majorana phases �1 and �2 can be extracted. As noted above, one is free to replace
individually the column vectors of M� by their negatives, so the Majorana phases have a
180Æ ambiguity. Finally, the leptonic CP phase ÆCP can be identi�ed from the e3 element of
UMNS or alternatively by constructing the Jarlskog invariant [16], J = Im(Ue2U

�
e3U

�
�2U�3),

of the untransformed U y
LU� matrix. The quadrant in which the phase ÆCP lies is uniquely

determined once the sign of sin �13 is speci�ed. In carrying out the phase transformations,
we have reduced the six inherent phase factors in U y

LU� to just three physical ones, ÆCP ; �1

and �2.
As an example, with a = 1; b = c = 2 and �R = 2:4� 1014 GeV, the seesaw mechanism

results in the light neutrino mass matrix

M� = NTM�1

R N =

0
B@

0 �� 0
�� 0 2�
0 2� 1

1
CAM2

U=�R (12)

with three texture zeros. We obtain

m1 = 5:6� 10�3; m2 = 9:8� 10�3; m3 = 57� 10�3 eV;
M1 =M2 = 2:8� 108 GeV; M3 = 2:5� 1014 GeV;
�m2

32
= 3:2� 10�3 eV2; sin2 2�atm = 0:994;

�m2

21
= 6:5� 10�5 eV2; sin2 2�sol = 0:88;

Ue3 = �0:01395� 0:00085i; sin2 2�reac = 0:0008:
J = 2:0� 10�4; ÆCP = �3:5Æ; �1 = �0:2Æ; �2 = 0:1Æ:

(13)

Here we have chosen the convention sin �13 < 0, so that the CP phase ÆCP is near zero
rather than 180Æ. The small value of ÆCP follows since M� is real in this example, while L
contributes only a small phase contribution. The two Majorana phases are very small, since
essentially no phase rotation on the right is needed to bring U y

LU� into the standard MNS
form of Eq. (2). The e�ective neutrinoless double beta decay mass is given by

hm��i = j
P

imiU
2

eij = 5:7� 10�4 eV; (14)

where the Majorana phases and the signs of the eigenvalues in Eq. (9) are taken into account.
In the GUT model we are considering, hm��i � few � 10�4 eV is obtained over the entire
viable LMA region. Note that these values will not be accessible to the presently planned
double beta decay experiments.

The above results compare favorably with the determination of the atmospheric neutrino
mixing parameters by the Super-K collaboration as given in Eq. (4), as well as their present
best-�t point in the solar neutrino LMA region as given in Eq. (5). In fact, the whole
presently-allowed LMA region [10] can be covered with 1:0 <

� a <
� 2:4 and 1:8 <

� b = c <
� 5:2.
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IV. RESULTS

We can now examine the viable region of GUT model parameter space that is consistent
with the LMA solar neutrino solution and explore the predicted relationships between the
observables sin2 2�23; sin

2 2�12; sin
2 2�13; ÆCP , �m

2

32
, and �m2

21
. We will �rst consider the

simplest case in which there are, in e�ect, only two real dimensionless GUT model parame-
ters. We then look at the more general case in which we allow a �nite phase �0 so that a is
complex.
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FIG. 1. The viable region of GUT parameter space consistent with the present bounds on the

LMA MSW solution. Contours of constant sin2 2�13 and lines of constant sin
2 2�12 are shown. The

region above sin2 2�13 = 0:003 can be explored with Neutrino Superbeams, while the region below

this can be explored with Neutrino Factories, down to sin2 2�13 � 0:0001.
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A. Parameter Choice: a and b = c Real

The viable region of GUT model parameter space consistent with the LMA solar solution
is shown in Fig. 1. Both parameters a and b are constrained by the data to be close to unity,
with 1:0 <

� a <
� 2:4 and 1:8 <

� b <
� 5:2. Superimposed on the allowed region, Fig. 1 shows

contours of constant sin2 2�12 (which are approximately parallel to the b-axis) and contours
of constant sin2 2�13 (which are approximately at 45Æ in the (a; b)-plane).
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4x10−5

5x10−5

7x10−5

FIG. 2. The viable region of GUT parameter space consistent with the present bounds on the

LMA MSW solution. Contours of constant �m2
21

and lines of constant sin2 2�12 are shown.

The coming long-baseline accelerator neutrino oscillation experiment MINOS [17] at
Fermilab, and the CNGS experiments [18] at CERN, are expected to be able to observe a
�� ! �e signal if sin

2 2�13 > 0:03. This is above the allowed region of the (a; b)-parameter
space. Hence the GUT model we are considering predicts that these long-baseline experi-
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TABLE I. List of eight points selected in the LMA allowed parameter region to illustrate the

neutrino oscillation parameter predictions of the GUT model.

Point Model Parameters �m2
21 �m2

32 sin2 2�12 sin2 2�23 sin2 2�13
a b eV2 eV2

(A) 1.0 2.0 6:5 � 10�5 3:2� 10�3 0.880 0.994 0.0008

(B) 1.2 2.8 3:2 � 10�5 3:2� 10�3 0.838 0.980 0.0038

(C) 1.7 2.7 10:9 � 10�5 3:2� 10�3 0.732 0.996 0.00008

(D) 1.7 3.0 6:3 � 10�5 3:2� 10�3 0.745 0.999 0.0014

(E) 1.7 3.4 4:0 � 10�5 3:2� 10�3 0.747 0.992 0.0033

(F) 2.0 3.0 12:8 � 10�5 3:2� 10�5 0.655 0.987 0.00001

(G) 2.2 3.5 8:8 � 10�5 3:2� 10�3 0.629 0.996 0.0008

(H) 2.2 4.3 3:6 � 10�5 3:2� 10�3 0.648 0.993 0.0042

ments will obtain a null result. A new generation of upgraded conventional neutrino beams
is being considered [19], and is expected to be able to probe the region sin2 2�13 > 0:003,
and hence measure the parameter �13 if the solution lies in the upper part of the allowed
(a; b)-plane indicated in the �gure. A Neutrino Factory [20] is expected to be able to probe
down to values of sin2 2�13 as low as O(10�4), which will therefore cover the entire allowed
(a; b)-plane, except for a narrow band in which sin2 2�13 ! 0 as sin2 2�23 becomes maximal.

Figure 2 shows, once again, the viable region of parameter space consistent with the LMA
solar solution, but this time with contours of constant �m2

21
displayed. These contours are

approximately at 45Æ in the (a; b)-plane, and are almost parallel to the contours of constant
sin2 2�13 shown in Fig. 1. This implies a remarkable correlation between the predicted values
of �m2

21
and sin2 2�13. This correlation is shown explicitly in Fig. 3 which displays, for a

grid of points that span the allowed region of the (a; b)-parameter space, the predicted
values of (�m2

21
, sin2 2�13). The points are con�ned to a narrow band, with sin2 2�12 varying

across the band. Note that if the LMA solution is indeed the correct solution to explain the
solar neutrino de�cit observations, KamLAND [21] is expected to provide measurements of
�m2

21
and sin2 2�12. Hence the GUT model we are considering will be able to give a precise

prediction for sin2 2�13.
In Table I we have selected eight points in the LMA allowed parameter region to illustrate

the neutrino oscillation parameter predictions of the GUT model. The correlations noted
above are evident.

We next consider the sensitivity of the predicted oscillation parameters to the assumed
values of the underlying GUT model parameters. For a grid of points in the (a; b)-plane,
Table II lists the (�a=a)=(� sin2 2�12= sin

2 2�12), i.e., the fractional changes in the GUT
scale parameter a divided by the fractional changes in the predicted oscillation parameter
sin2 2�12. The values vary from -1.2 to -5.5 over the viable region of the (a; b)-plane. Hence,
if the parameter a is increased by 1%, say, then the predicted value of sin2 2�12 will typically
decrease by a few percent. The corresponding sensitivity of the predicted value of �m2

21

to changes in a is shown in Table III. Note that if the parameter a is increased by 1%,
say, then the predicted value of �m2

21
increases typically by a fraction of a percent. Similar
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FIG. 3. Variation of sin2 2�13 with �m2
21. The points plotted populate a grid which spans the

viable region of the (a; b) parameter space. The small spread in points across the band indicated

arises from the variation in sin2 2�12 for the points plotted.

sensitivities are expected for the predicted values of sin2 2�13 with changes in a (Table IV),
or for the predicted values of �m2

21
(Table V) or sin2 2�13 (Table VI) with changes in b.

The predicted values of sin2 2�12 are insensitive to the value of b (not shown in the tables).
From these considerations we see that a precise measurement of sin2 2�12 by KamLAND will
precisely determine the GUT model parameter a (for real a). A very precise measurement
of either �m2

21
or sin2 2�13 will then precisely determine b.

In summary, our examination of the simplest case (a and b = c real) has revealed some
striking features:

(i) A large value for sin2 2�13 cannot be accommodated. In fact the model predicts sin
2 �13 <

0:01.

(ii) The prediction for sin2 2�13 is precise once �m
2

21
and sin2 2�12 are known.
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TABLE II. Fractional change in the GUT scale parameter divided by the resulting fractional

change in the oscillation parameter: (�a=a)=(� sin2 2�12= sin
2 2�12).

a

b 1.2 1.4 1.6 1.8 2.0 2.2

4.5 -1.7

4.0 -3.1 -2.7 -2.0 -1.3

3.5 -4.6 -3.2 -2.0 -1.4

3.0 -5.5 -3.8 -2.4 -1.3

2.5 -4.0 -2.6 -1.2

2.0 -2.8

TABLE III. Fractional change in the GUT scale parameter divided by the resulting fractional

change in the oscillation parameter: (�a=a)=(�(�m2
21)=�m2

21).

a

b 1.2 1.4 1.6 1.8 2.0 2.2

4.5 0.3

4.0 0.4 0.4 0.3 0.3

3.5 0.5 0.4 0.4 0.3

3.0 0.5 0.4 0.3 0.2

2.5 0.3 0.2

2.0 0.2

TABLE IV. Fractional change in the GUT scale parameter divided by the resulting fractional

change in the oscillation parameter: (�a=a)=(� sin2 2�13= sin
2 2�13).

a

b 1.2 1.4 1.6 1.8 2.0 2.2

4.5 -0.7 -0.6

4.0 -0.7 -0.4 -0.3

3.5 -0.8 -0.5 -0.3 -0.2 -0.1

3.0 -0.6 -0.4 -0.2 -0.1

2.5 -0.2 -0.1

2.0
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TABLE V. Fractional change in the GUT scale parameter divided by the resulting fractional

change in the oscillation parameter: (�b=b)=(�(�m2
21)=�m2

21).

a

b 1.2 1.4 1.6 1.8 2.0 2.2

4.5

4.0 -0.2

3.5 -0.1 -0.2 -0.2

3.0 -0.2 -0.2 -0.2

2.5 -0.2 -0.4

2.0 -0.4

TABLE VI. Fractional change in the GUT scale parameter divided by the resulting fractional

change in the oscillation parameter: (�b=b)=(� sin2 2�13= sin
2 2�13).

a

b 1.2 1.4 1.6 1.8 2.0 2.2

4.5 0.4 0.3

4.0 0.4 0.3 0.2

3.5 0.4 0.3 0.2 0.1 0.05

3.0 0.3 0.3 0.2 0.05

2.5 0.2 0.05

2.0

B. Parameter Choice: b = c Real with a Complex

We have seen from the example presented in Sec. III that the CP phase, ÆCP , turns out
to be very small, since both the Dirac neutrino matrix N and the right-handed Majorana
matrixMR are real, while only the charged lepton matrix L is complex and results in a small
complex contribution to UMNS. But with two Higgs lepton-violating singlets contributing to
MR, one can introduce an additional complex phase �

0 into MR. In discussing CP violation,
we shall identify

a � b� a0ei�
0

; with b = c; (15)

where b is real and arises from the �rst Higgs singlet which contributes to all nine matrix
elements of MR, while a

0 can be complex and arises from the second Higgs singlet which
contributes to only the 13 and 31 elements. Any observable CP violation in the lepton
sector with its phase ÆCP is then controlled by �0 and the phase � appearing in the charged
lepton matrix L in Eq. (6). The viable region of parameter space shown in Fig. 1 and
2 is not signi�cantly changed. To understand the predictions in detail, we again choose
the eight speci�c points in parameter space listed earlier in Table I. For each point, the
predictions for sin2 2�12, sin

2 2�23, sin
2 2�13, and ÆCP are listed as functions of �0 in Tables

VII - XIV. The predicted observable ÆCP , as well as the Majorana phase �1, are shown
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for each point as functions of �0 in Figs. 4 and 5. Only the range j�0j < 75Æ within the
dashed lines in these �gures is consistent with the present lower limit on sin2 2�23. Note that

FIG. 4. The observable CP phase ÆCP and Majorana phase �1 are shown as functions of the

GUT phase parameter �0 for the �rst four of the eight points in parameter space that are listed in

Table I. The ranges of �0 of interest lie between the dashed lines.

when �0 = 0, corresponding to the maximum values predicted for sin2 2�23, the predictions
for ÆCP are typically a few degrees except for cases (C) and (F) for which ÆCP = �14Æ

and �50Æ, respectively. The peculiar behavior for these two special cases arises because
sin2 2�23 becomes maximal and crosses from the dark side (tan �23 > 1) into the light side
(tan �23 < 1) and back into the dark side as �0 goes through 0Æ. The predictions for �1 and
�2, on the other hand, are smoothly varying in all cases. Since �m2

21
is on the high side of

the allowed region for cases (C) and (F), and somewhat disfavored by other recent analyses

13



[10], it appears that the GUT model under consideration predicts that leptonic CP violation
will be small for the near maximal values of sin2 2�23 and more generally that jÆCP j < 50Æ.

FIG. 5. The observable CP phase ÆCP and Majorana phase �1 are shown as functions of the

GUT phase parameter �0 for the second four of the eight points in parameter space that are listed

in Table I. The ranges of �0 of interest lie between the dashed lines.

Next consider the predictions for the mixing angles, sin2 2�12 and sin2 2�23, which are
shown for the 8 points in parameter space in Figs. 6 and 7. These �gures show the pre-
dictions as functions of �0. Within the viable region of parameter space corresponding to
sin2 2�23 > 0:89, the permitted values of sin2 2�12 are restricted for each point in (a

0; b)-space.
A 10% measurement of sin2 2�12 by the KamLAND experiment, combined with a few percent
measurement of sin2 2�23 by MINOS and the CNGS experiments would enable signi�cant
regions of the GUT model parameter space to be excluded. A 1% measurement of sin2 2�23
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at a Neutrino Factory would provide a stringent test of the GUT model.

FIG. 6. The predicted value of sin2 2�12 shown as a function of the predicted sin2 2�23 for

the �rst four of the eight points in parameter space that are listed in Table I. The val-

ues of ÆCP vary around the contour of solutions and are indicated at points corresponding to

�0 = 0; ��=4; ��=2; �3�=4, and �. The viable region in sin2 2�23 lies between 0.89 and 1.0.

C. Parameter Choice: a 6= b 6= c

The more general GUT model case with a 6= b 6= c would arise if three Higgs VEVs
breaking lepton number were to contribute to the right-handed Majorana mass matrix. This
complication is much more diÆcult to analyse and is not studied here. The two simpli�ed
cases we have studied appear suÆcient to present a realistic picture of neutrino oscillations.
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FIG. 7. The predicted value of sin2 2�12 shown as a function of the predicted sin2 2�23 for

the second four of the eight points in parameter space that are listed in Table I. The val-

ues of ÆCP vary around the contour of solutions and are indicated at points corresponding to

�0 = 0; ��=4; ��=2; �3�=4, and �.
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V. CONCLUSIONS

Within the framework of an SO(10) GUT model developed by Albright and Barr that
can accommodate both the atmospheric and LMA solar neutrino mixing solutions, we have
presented explicit predictions for sin2 2�13, sin

2 2�12, sin
2 2�23, and �m2

21
. Precise measure-

ments of sin2 2�12 and �m2

21
by KamLAND can be used to precisely determine the GUT

parameters a (with a real) and b. We �nd that the model can then be tested with precision
neutrino oscillation measurements of sin2 2�23, sin

2 2�13, and the leptonic CP phase Æ0 at
Neutrino Superbeams and Neutrino Factories.

Over the entire region of viable GUT model parameter space, the value of sin2 2�13
is predicted to be less than 0.01. If this is the case, �� ! �e oscillations will not be
observed by the MINOS or CNGS experiments. Over half of the viable parameter space,
the predicted sin2 2�13 exceeds 0.003, and �� ! �e oscillations would be expected to be
observed at Neutrino Superbeams. The remaining half of the parameter space would be
probed at a Neutrino Factory, except a small region for which sin2 2�13 < 0:0001. The GUT
model predicts a striking correlation between �m2

21
and sin2 2�13. Once �m

2

21
is measured

by KamLAND with a precision of a few percent, the model will predict sin2 2�13 with a
precision of a few percent. A precise test of the model with this level of precision will
require a Neutrino Factory.

In the more general version of the GUT model in which a is complex, the absolute
observable CP phase jÆCP j is at most � 50Æ over almost the entire viable parameter space.
For the maximal atmospheric neutrino mixing region, ÆCP is typically very small, with
exceptions noted earlier for the largest values of �m2

21
presently allowed. The predicted

hm��i is at most a few times 10�4 eV, too small for neutrinoless double beta decay to be
observed by the next generation experiments.

Finally, a general conclusion from the study of the predictions of one speci�c GUT model
is that, if the LMA solar solution is con�rmed, very precise measurements of all the oscilla-
tion parameters are important to test the theory and determine the associated parameters.
We will need a Neutrino Factory.

The initial preparation of this manuscript was carried out at the Snowmass 2001 Work-
shop on the Future of Particle Physics. One of us (CHA) thanks Stephen Barr for several
discussions on the complex extension of the right-handed Majorana neutrino mass matrix
that was developed in collaboration with him for the LMA solution.
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TABLE VII. Oscillation Parameters for Point (A)

(A) MR Model Parameters: a0 = 1:0; b = c = 2:0; �R = 2:5� 1014 GeV

Predictions: �m2
21 = 6:5 � 10�5 eV2; �m2

32 = 3:2 � 10�3 eV2

�0 sin2 2�12 sin2 2�23 sin2 2�13 ÆCP �1 �2

�� 0.940 0.17 0.0033 182Æ �180Æ �180Æ

�3�=4 0.928 0.38 0.0031 97Æ �112Æ �109Æ

��=2 0.916 0.76 0.0022 52Æ �73Æ �69Æ

��=3 0.900 0.919 0.0015 28Æ �50Æ �47Æ

��=4 0.893 0.960 0.0013 17Æ �38Æ �35Æ

0 0.880 0.994 0.0008 �4Æ 0Æ 0Æ

�=4 0.888 0.960 0.0010 �20Æ 38Æ 35Æ

�=3 0.894 0.919 0.0013 �29Æ 50Æ 47Æ

�=2 0.909 0.76 0.0019 �50Æ 73Æ 69Æ

3�=4 0.924 0.38 0.0028 �94Æ 112Æ 109Æ

� 0.940 0.17 0.0033 �178Æ 180Æ 180Æ

TABLE VIII. Oscillation Parameters for Point (B)

(B) MR Model Parameters: a0 = 1:6; b = c = 2:8; �R = 2:4 � 1014 GeV

Predictions: �m2
21 = 3:2 � 10�5 eV2; �m2

32 = 3:2 � 10�3 eV2

�0 sin2 2�12 sin2 2�23 sin2 2�13 ÆCP �1 �2

�� 0.908 0.22 0.0077 181Æ �180Æ �180Æ

�3�=4 0.889 0.40 0.0073 104Æ �116Æ �114Æ

��=2 0.875 0.74 0.0060 61Æ �75Æ �72Æ

��=3 0.860 0.894 0.0049 39Æ �51Æ �48Æ

��=4 0.852 0.938 0.0045 28Æ �39Æ �36Æ

0 0.838 0.980 0.0038 �1Æ 0Æ 0Æ

�=4 0.846 0.938 0.0042 �30Æ 39Æ 36Æ

�=3 0.852 0.894 0.0045 �39Æ 51Æ 48Æ

�=2 0.867 0.74 0.0055 �61Æ 75Æ 72Æ

3�=4 0.884 0.40 0.0069 �103Æ 116Æ 114Æ

� 0.908 0.22 0.0077 �179Æ 180Æ 180Æ
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TABLE IX. Oscillation Parameters for Point (C)

(C) MR Model Parameters: a0 = 1:0; b = c = 2:7; �R = 2:5 � 1014 GeV

Predictions: �m2
21 = 10:9� 10�5 eV2; �m2

32 = 3:2� 10�3 eV2

�0 sin2 2�12 sin2 2�23 sin2 2�13 ÆCP �1 �2

�� 0.819 0.08 0.0021 183Æ �180Æ �180Æ

�3�=4 0.806 0.35 0.0019 83Æ �102Æ �100Æ

��=2 0.783 0.80 0.0012 35Æ �69Æ �66Æ

��=3 0.760 0.963 0.0007 7Æ �49Æ �45Æ

��=4 0.750 0.992 0.0005 �7Æ �38Æ �35Æ

0 0.732 0.996 0.0001 �14Æ 0Æ 0Æ

�=4 0.742 0.992 0.0003 7Æ 38Æ 35Æ

�=3 0.750 0.963 0.0005 �4Æ 49Æ 45Æ

�=2 0.773 0.80 0.0010 �31Æ 69Æ 66Æ

3�=4 0.800 0.35 0.0017 �78Æ 100Æ 102Æ

� 0.819 0.08 0.0021 �177Æ 180Æ 180Æ

TABLE X. Oscillation Parameters for Point (D)

(D) MR Model Parameters: a0 = 1:3; b = c = 3:0; �R = 2:5� 1014 GeV

Predictions: �m2
21 = 6:3 � 10�5 eV2; �m2

32 = 3:2 � 10�3 eV2

�0 sin2 2�12 sin2 2�23 sin2 2�13 ÆCP �1 �2

�� 0.831 0.13 0.0049 182Æ �180Æ �180Æ

�3�=4 0.812 0.36 0.0045 94Æ �108Æ �106Æ

��=2 0.793 0.77 0.0033 52Æ �72Æ �68Æ

��=3 0.772 0.939 0.0024 30Æ �49Æ �46Æ

��=4 0.762 0.977 0.0020 20Æ �38Æ �35Æ

0 0.745 0.9991 0.0014 �3Æ 0Æ 0Æ

�=4 0.754 0.977 0.0017 �22Æ 38Æ 35Æ

�=3 0.763 0.940 0.0021 �31Æ 49Æ 46Æ

�=2 0.783 0.77 0.0029 �51Æ 72Æ 68Æ

3�=4 0.806 0.36 0.0042 �92Æ 108Æ 106Æ

� 0.831 0.13 0.0049 �178Æ 180Æ 180Æ
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TABLE XI. Oscillation Parameters for Point (E)

(E) MR Model Parameters: a0 = 1:7; b = c = 3:4; �R = 2:5� 1014 GeV

Predictions: �m2
21 = 4:0 � 10�5 eV2; �m2

32 = 3:2 � 10�3 eV2

�0 sin2 2�12 sin2 2�23 sin2 2�13 ÆCP �1 �2

�� 0.833 0.18 0.0076 181Æ �180Æ �180Æ

�3�=4 0.811 0.38 0.0071 100Æ �113Æ �111Æ

��=2 0.793 0.75 0.0057 59Æ �74Æ �70Æ

��=3 0.774 0.916 0.0046 37Æ �50Æ �47Æ

��=4 0.764 0.958 0.0041 27Æ �38Æ �36Æ

0 0.747 0.992 0.0033 �2Æ 0Æ 0Æ

�=4 0.757 0.958 0.0038 �28Æ 38Æ 36Æ

�=3 0.765 0.916 0.0042 �38Æ 50Æ 47Æ

�=2 0.784 0.75 0.0052 �59Æ 74Æ 70Æ

3�=4 0.805 0.38 0.0068 �99Æ 113Æ 111Æ

� 0.833 0.18 0.0076 �179Æ 180Æ 180Æ

TABLE XII. Oscillation Parameters for Point (F)

(F) MR Model Parameters: a0 = 1:0; b = c = 3:0; �R = 2:6� 1014 GeV

Predictions: �m2
21 = 12:8� 10�5 eV2; �m2

32 = 3:2� 10�3 eV2

�0 sin2 2�12 sin2 2�23 sin2 2�13 ÆCP �1 �2

�� 0.750 0.06 0.0018 183Æ �180Æ �180Æ

�3�=4 0.736 0.34 0.0016 76Æ �99Æ �96Æ

��=2 0.710 0.82 0.0010 27Æ �68Æ �65Æ

��=3 0.685 0.975 0.0005 �5Æ �48Æ �45Æ

��=4 0.674 0.998 0.0003 �22Æ �38Æ �35Æ

0 0.655 0.987 0.00001 �50Æ 0Æ 0Æ

�=4 0.665 0.998 0.0002 27Æ 38Æ 35Æ

�=3 0.675 0.975 0.0004 11Æ 48Æ 45Æ

�=2 0.698 0.82 0.0008 �21Æ 68Æ 65Æ

3�=4 0.729 0.34 0.0014 �71Æ 99Æ 96Æ

� 0.750 0.06 0.0018 �177Æ 180Æ 180Æ
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TABLE XIII. Oscillation Parameters for Point (G)

(G) MR Model Parameters: a0 = 1:3; b = c = 3:5; �R = 2:4� 1014 GeV

Predictions: �m2
21 = 8:8 � 10�5 eV2; �m2

32 = 3:2 � 10�3 eV2

�0 sin2 2�12 sin2 2�23 sin2 2�13 ÆCP �1 �2

�� 0.726 0.08 0.0043 182Æ �180Æ �180Æ

�3�=4 0.706 0.35 0.0039 87Æ �104Æ �101Æ

��=2 0.684 0.80 0.0027 47Æ �70Æ �66Æ

��=3 0.659 0.961 0.0019 25Æ �49Æ �46Æ

��=4 0.648 0.991 0.0015 15Æ �38Æ �35Æ

0 0.629 0.996 0.0008 �4Æ 0Æ 0Æ

�=4 0.639 0.991 0.0012 �17Æ 38Æ 35Æ

�=3 0.649 0.961 0.0015 �25Æ 49Æ 46Æ

�=2 0.672 0.80 0.0023 �46Æ 70Æ 66Æ

3�=4 0.699 0.35 0.0036 �85Æ 104Æ 101Æ

� 0.726 0.08 0.0043 �178Æ 180Æ 180Æ

TABLE XIV. Oscillation Parameters for Point (H)

(H) MR Model Parameters: a0 = 2:1; b = c = 4:3; �R = 2:4� 1014 GeV

Predictions: �m2
21 = 3:6 � 10�5 eV2; �m2

32 = 3:2 � 10�3 eV2

�0 sin2 2�12 sin2 2�23 sin2 2�13 ÆCP �1 �2

�� 0.746 0.17 0.0090 181Æ �180Æ �180Æ

�3�=4 0.719 0.38 0.0084 101Æ �113Æ �111Æ

��=2 0.699 0.76 0.0068 60Æ �74Æ �70Æ

��=3 0.678 0.919 0.0056 38Æ �50Æ �47Æ

��=4 0.667 0.960 0.0051 28Æ �39Æ �36Æ

0 0.648 0.993 0.0042 �1Æ 0Æ 0Æ

�=4 0.659 0.960 0.0047 �29Æ 38Æ 36Æ

�=3 0.667 0.919 0.0051 �39Æ 50Æ 47Æ

�=2 0.688 0.76 0.0063 �60Æ 74Æ 70Æ

3�=4 0.712 0.38 0.0080 �99Æ 113Æ 111Æ

� 0.746 0.17 0.0090 �179Æ 180Æ 180Æ
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